【我们这十年@坐标中国】云网融合织就算力高速,“算”出数字生活潮******
中新网北京10月11日电题:云网融合织就算力高速,“算”出数字生活潮
作者 左雨晴
从“要想富,先修路”到“想发展,投算力”,算力基础设施等“新基建”正在国内掀起“落地潮”。
我们为什么需要算力?现在算力速度有多快?它又给我们带来了什么?
算力改变生活
什么是算力?算力是指对数据的处理能力。
在生活中,手机、电脑、超级计算机等诸多硬件设备都离不开算力,可以说算力是数字经济的底层逻辑,数字经济的任何发展都建立在优化的算法和强大的计算速度上,这让算力成为关键的核心生产力。
近年来,随着5G、人工智能、物联网、区块链等领域的快速发展,算力已悄悄改变我们的生活和命运。
在机场高速路口,汽车以80公里时速,“无感”通过收费站,仅收费环节每天就能节约2.75小时,大大改善了市民的出行体验。
广州机场高速,汽车以80公里时速,“无感”通过收费站。 中国电信供图在生产线上,一款新车上线前需要经历上千次的碰撞测试,而超级算力能模拟出整个碰撞过程,300次的仿真碰撞试验,在一分钟内成功模拟完成。更长远来看,“智能汽车”是离人工智能最近的应用场景之一,若能更快普及,将再次重塑人们的出行生活方式。
在偏远山区,大量人工智能深度学习算法和算力支撑下的智能教育,让远程人工智能可以辅助教师“因材施教”,推动教育资源均衡化,帮助深山里的孩子实现“走出大山”的梦想。
据工信部数据,中国算力产业规模快速增长,近五年平均增速超过30%。截至2022年6月底,我国在用数据中心机架总规模超过590万标准机架,服务器规模约2000万台,算力总规模超过150EFlops(每秒15000京次浮点运算次数),排名全球第二。
在数字化时代,数据中心、智算中心等算力基础设施正成为加速数字经济发展和产业转型升级的主要动力。在算力需求日益复杂,应用场景不断涌现的当下,中国东部地区算力资源吃紧,西部算力赋闲,如何让用户更好地像用电一样使用算力服务?
云网融合织就算力“高速路网”
数字时代正在召唤一张高效率的“算力网”。
2012年,中国电信宣布启动天翼云计算战略,正式进军云计算领域,成为国内首家涉足云计算服务的运营商。
以“算”为中心,“网”为根基,算力网络可驱动数据的跨域流动、实现算力的跨域调配。而作为一个复杂的、融合创新的系统性工程,算力网络如何像水和电一样成为“一点接入、即取即用”的社会级服务,孵化灵活多样的商业应用,需要统一的科学规划与评估。
2022年2月,中国“东数西算”工程正式全面启动。8个国家算力枢纽节点,10个国家数据中心集群,将打通中国“数”动脉,把东部算力需求有序引导到西部的数据中心处理、计算、存储,为可再生能源丰富的西部开辟出一条发展新路,成为一条打通东西部经济社会发展的“数动脉”。
作为算力基础设施和骨干传输网络的建设者,电信运营商已经成为打造算力网络的主力军。覆盖全国千城万池的“云网融合”,不仅构建端到端的安全能力和绿色低碳的基础设施,也让实体经济和人们的生活乘“云”而上。
通过内蒙古、贵州两个服务全球的中央数据中心,京津冀、长三角、粤港澳、陕川渝四个重点区域节点,31个省份均有布局的数据中心,再加上广泛分布的边缘节点,中国电信形成了2+4+31+X的全国算力布局。
中国电信京津冀大数据产业园。 中国电信供图如今,中国电信已拥有700多个数据中心,48.7万架互联网数据中心机架,机架利用率达到72%,IDC资源在国内数量最多、分布最广,“一城一池”累计覆盖超过160个地市。
“计算+连接”的深度融合,组成了算力传输的“高速路网”。在这个“高速路网”中,中国电信的算力规模可达每秒310亿亿次浮点运算,这意味着每一秒都有海量的算力正在调度。
从中国电信贵州数据中心到北京大约2200公里,动车需要10个小时左右,而算力传输时延只需要不到20毫秒。算力与网络充分融合,正以难以想象的速度,从看不见的地方延伸到看得见的远方,为人们的生活提供普惠便捷的智能服务。
“算网大脑”让算力调度智能化
随着东部算力需求有序引导到西部,一个逐步完善的数网协同、数云协同、云边协同、绿色智能的多层次算力设施体系必将加快形成。在此过程中,“十四五”规划提出的“强化算力统筹智能调度”成为构建算力网络的重要工作。
“算力调度作为‘东数西算’的重要环节,就如同‘西气东输’的管道,‘西电东送’的高压线路。但算力调度在实施过程却又复杂很多,分布式的算力决定了算力是多样的,例如计算任务的大小、时延要求、成本等多个因素。”中国电信天翼云首席技术官广小明表示。
以算力为核心进行信息处理,以网络为核心进行信息交换,算力“高速路网”需要一颗独特的智能“大脑”。
2022年5月17日,在天翼云诞生的第十年,中国电信推出了天翼云4.0算力分发网络平台——“息壤”,使得调度千城万池的算力不再是梦。
中国电信天翼云数据中心。 中国电信供图。广小明介绍,无论业务对算力的需求是多少,“息壤”都能够规划出满足需求的算力和网络资源,以“随愿算网”的方式,对边缘云、中心云、第三方资源等全网算力进行统一管理和调度,实现业务性能和成本的最优。
“由算力调度引擎、算力资源管理平台、算力资源共同构成的‘息壤’就像一个算力传输的枢纽,在全国范围内,实现每分钟数万次、每天上千万次的算力统筹和调度,满足各种领域对算力的极致需求。”
把东部需要进行的机器学习、数据推理、智能计算等AI训练和大数据推理的工作放到西部,自动配置和调度相应算力;把东部对时延不敏感的、不活跃的、需存档的海量数据,例如医院影像数据、视频监控数据等,放在西部存储……通过“息壤”,“东数西训”、“东数西备”、“东算西也算”、“东部企业,西部上云”成为现实,云渲染、跨云调度、性能压测、混合云AI计算等多种应用场景,也都有着“息壤”的身影。
时代浪潮下,算力正加速筑牢数字经济的底座,成为经济社会发展迈向更远未来的基石。(完)
科学家成功合成铹的第14个同位素****** 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。 近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。 此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。 不断进行探索,再次合成铹同位素 铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。 质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。 103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。 截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。 目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。 通过熔合反应,形成新的原子核 铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。 “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。 在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。 “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 拓展新的领域,推动超重核理论研究 由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。 此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。 研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。 “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |